• What is ALK?
  • ALK in Lung Cancer
  • Clinical Trials

ALK

The anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that is aberrant in a variety of malignancies. For example, activating missense mutations within full length ALK are found in a subset of neuroblastomas (Chen et al. 2008; George et al. 2008; Janoueix-Lerosey et al. 2008; Mosse et al. 2008). By contrast, ALK fusions are found in anaplastic large cell lymphoma (e.g., NPM-ALK; Morris et al. 1994), colorectal cancer (Lin et al. 2009​Lipson et al. 2012), inflammatory myofibroblastic tumor (IMT; Lawrence et al. 2000) non-small cell lung cancer (NSCLC; Choi et al. 2008; Koivunen et al. 2008; Rikova et al. 2007; Soda et al. 2007; Takeuchi et al. 2009), and ovarian cancer (Ren et al. 2012). All ALK fusions contain the entire ALK tyrosine kinase domain. To date, those tested biologically possess oncogenic activity in vitro and in vivo (Choi et al. 2008; Morris et al. 1994; Soda et al. 2007; Takeuchi et al. 2009). ALK fusions and copy number gains have been observed in renal cell carcinoma (Debelenko et al. 2011; Sukov et al. 2012). Finally, ALK copy number and protein expression aberrations have also been observed in rhabdomyosarcoma (van Gaal et al. 2012).

The various N-terminal fusion partners promote dimerization and therefore constitutive kinase activity (for review, see Mosse, Wood, and Maris 2009). Signaling downstream of ALK fusions results in activation of cellular pathways known to be involved in cell growth and cell proliferation (Figure 1).

alk.png

Figure 1.
Schematic representation of ALK fusions. "X" represents the various fusion partners that have been described. Dimerization of the ALK fusion mediated by the fusion partner ("X"), results in constitutive activation of the ALK tyrosine kinase. ALK signaling results in pro-growth and anti-apoptosis.

Related Pathways

Contributors: Christine M. Lovly, M.D., Ph.D., Leora Horn, M.D., M.Sc., William Pao, M.D., Ph.D. (through April 2014)

Suggested Citation: Lovly, C., L. Horn, W. Pao. 2015. ALK. My Cancer Genome https://www.padiracinnovation.org/content/disease/lung-cancer/alk/?tab=0 (Updated December 7).

Last Updated: December 7, 2015

ALK in Non-Small Cell Lung Cancer (NSCLC)

Approximately 3–7% of lung tumors harbor ALK fusions (Koivunen et al. 2008; Kwak et al. 2010; Shinmura et al. 2008; Soda et al. 2007; Takeuchi et al. 2008; Wong et al. 2009). ALK fusions are more commonly found in light smokers (< 10 pack years) and/or never-smokers (Inamura et al. 2009Koivunen et al. 2008; Kwak et al. 2010; Soda et al. 2007; Wong et al. 2009). ALK fusions are also associated with younger age (Inamura et al. 2009; Kwak et al. 2010; Wong et al. 2009) and adenocarcinomas with acinar histology (Inamura et al. 2009; Wong et al. 2009) or signet-ring cells (Kwak et al. 2010). Clinically, the presence of EML4-ALK fusions is associated with EGFR tyrosine kinase inhibitor (TKI) resistance (Shaw et al. 2009).

Multiple different ALK rearrangements have been described in NSCLC. The majority of these ALK fusion variants are comprised of portions of the echinoderm microtubule-associated protein-like 4 (EML4) gene with the ALK gene. At least nine different EML4-ALK fusion variants have been identified in NSCLC (Figure 1; Choi et al. 2008; Horn and Pao 2009; Koivunen et al. 2008; Soda et al. 2007; Takeuchi et al. 2008; Takeuchi et al. 2009; Wong et al. 2009). In addition, non-EML4 fusion partners have also been identified, including KIF5B-ALK (Takeuchi et al. 2009) and TFG-ALK (Rikova et al. 2007). Clinically, the presence of an ALK rearrangement is detected by fluorescence in situ hybridization (FISH) with an ALK break apart probe. FISH testing is not able to discern which particular ALK fusion is found in a clinical sample.

In the vast majority of cases, ALK rearrangements are non-overlapping with other oncogenic mutations found in NSCLC (e.g., EGFR mutations, KRAS mutations, etc.; Inamura et al. 2009; Kwak et al. 2010; Shinmura et al. 2008; Wong et al. 2009).

alk-fusions.png

Figure 1.
Schematic of ALK fusions found in lung cancer.

Contributors: Christine M. Lovly, M.D., Ph.D., Leora Horn, M.D., M.Sc., William Pao, M.D., Ph.D. (through April 2014)

Suggested Citation: Lovly, C., L. Horn, W. Pao. 2014. ALK in Non-Small Cell Lung Cancer (NSCLC). My Cancer Genome https://www.padiracinnovation.org/content/disease/lung-cancer/alk/ (Updated September 29).

Last Updated: September 29, 2014

My Cancer Genome has released its new and improved cancer clinical trials search tool on our beta website. Please visit beta.padiracinnovation.org to check it out!

Disclaimer: The information presented at padiracinnovation.org is compiled from sources believed to be reliable. Extensive efforts have been made to make this information as accurate and as up-to-date as possible. However, the accuracy and completeness of this information cannot be guaranteed. Despite our best efforts, this information may contain typographical errors and omissions. The contents are to be used only as a guide, and health care providers should employ sound clinical judgment in interpreting this information for individual patient care.